

Q1. (A) Attempt any six of the following

1. $2\left[\begin{array}{ll}1 & 3 \\ 0 & x\end{array}\right]+\left[\begin{array}{ll}y & 0 \\ 1 & 2\end{array}\right]=\left[\begin{array}{ll}5 & 6 \\ 1 & 8\end{array}\right]$ Find x and y

SOLUTION

$$
\begin{aligned}
& {\left[\begin{array}{cc}
2 & 6 \\
0 & 2 x
\end{array}\right]+\left[\begin{array}{ll}
y & 0 \\
1 & 2
\end{array}\right]=\left[\begin{array}{ll}
5 & 6 \\
1 & 8
\end{array}\right]} \\
& {\left[\begin{array}{cc}
2+y & 6 \\
1 & 2 x+2
\end{array}\right]=\left[\begin{array}{ll}
5 & 6 \\
1 & 8
\end{array}\right]}
\end{aligned}
$$

By Equality of Two Matrices

$$
\begin{array}{r|r}
2+y=5 & 2 x+2=8 \\
y=3 & 2 x=6 \\
x=3
\end{array}
$$

$$
x=3 \& y=3
$$

2. Find $\frac{d^{2} y}{d x^{2}}$ if $y=\log x$

SOLUTION $y=\log x$
Diff. wrt $x: \frac{d y}{d x}=\frac{1}{x}$

Diff. once again wrt x

$$
\frac{d^{2} y}{d x^{2}}=\frac{-1}{x^{2}}
$$

3. Discuss the continuity of function f at $x=0$

$$
\begin{aligned}
f(x) & =\frac{\sqrt{4+x}-2}{3 x} & & ; x \neq 0 \\
& =1 / 12 & ; & x=0
\end{aligned}
$$

SOLUTION

Step 1

$\operatorname{Lim} f(x)$
$x \rightarrow 0$
$=\operatorname{Lim}_{x \rightarrow 0} \frac{\sqrt{4+x}-2}{3 x}$
$=\operatorname{Lim}_{x \rightarrow 0} \frac{\sqrt{4+x}-2}{3 x} \frac{\sqrt{4+x}+2}{\sqrt{4+x}+2}$
$=\lim _{x \rightarrow 0} \frac{4+x-4}{3 x} \frac{1}{\sqrt{4+x}+2}$
$\lim _{x \rightarrow 0} \frac{1}{3 x} \frac{1}{\sqrt{4+x}+2} \quad x \neq 0$
$=\operatorname{Lim}_{x \rightarrow 0} \frac{1}{3} \frac{1}{\sqrt{4+x}+2}$
$=\quad \frac{1}{3} \frac{1}{\sqrt{4+0}+2}$
$=\quad \frac{1}{3} \frac{1}{2+2}$
$=\quad \frac{1}{12}$
Step 2 :
$f(0)=1 / 12$ given

Step 3 :

$f(0)=\operatorname{Lim}_{x \rightarrow 0} f(x) ; f$ is continuous at $x=0$
04. the total revenue $R=720 x-3 x^{2}$ where x is number of items sold. Find x for which total revenue R is increasing

SOLUTION $\quad R=720 x-3 x^{2}$
For Revenue increasing
$\frac{d R}{d x}>0$
$720-6 x>0$
$720>6 x \quad x<120$
05. Express the truth of each of the following statements using Venn Diagram

1. All teachers are scholars and scholars are teachers
$\mathbf{T} \equiv$ set of all teachers
$\mathbf{O} \equiv$ set of all scholars
$\mathbf{U} \equiv$ set of all human beings

2. if a quadrilateral is a rhombus then it is a parallelogram
$\mathbf{R} \equiv$ set of all rhombus
$\mathbf{P} \equiv$ set of all parallelograms
$\mathbf{U} \equiv$ set of all quadrilaterals

3. Write negations of the following statements
a) the number 6 is an even number or the number 25 is a perfect square

Using $\quad \sim(P \vee Q) \equiv \sim P \wedge \sim Q$
Negation : 6 is not an even number and 25 is not a perfect square
b) if $x \in A \cap B$, then $x \in A$ and $x \in B$

Using $\quad \sim(P \rightarrow Q) \equiv P \wedge \sim Q$
Negation : $x \in A \cap B$ and $x \notin A$ OR $x \notin B$
07. Evaluate

$$
\int \frac{1}{x(3+\log x)} d x
$$

SOLUTION

$$
\begin{aligned}
& \begin{array}{l}
3+\log x=t \\
\frac{1}{x} d x
\end{array}=d t \\
& \int \frac{1}{t} d t \\
& \log |t|+c \\
& \text { Resubstitute } \\
& \text { Log }|3+\log x|+c
\end{aligned}
$$

8. $\left\{3\left(\begin{array}{rrr}1 & 2 & 0 \\ 0 & -1 & 3\end{array}\right)-\left(\begin{array}{rrr}1 & 5 & -2 \\ -3 & -4 & 4\end{array}\right)\right\}\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$. Simplify

SOLUTION
$\left\{\left(\begin{array}{rrr}3 & 6 & 0 \\ 0 & -3 & 9\end{array}\right)^{-}\left(\begin{array}{rrr}1 & 5 & -2 \\ -3 & -4 & 4\end{array}\right)\right\}\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)$
$=\left(\begin{array}{lll}3-1 & 6-5 & 0+2 \\ 0+3 & -3+4 & 9-4\end{array}\right)\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)$
$=\left(\begin{array}{lll}2 & 1 & 2 \\ 3 & 1 & 5\end{array}\right)\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$
$=\binom{2+2+2}{3+2+5}$

1. Solve the following equations by the inversion method

$$
2 x+3 y=-5 \text { and } 3 x+y=3
$$

STEP 1 :

$$
\begin{aligned}
& \left(\begin{array}{ll}
3 & 1 \\
2 & 3
\end{array}\right)\binom{x}{y}=\binom{3}{-5} \\
& A X=B \\
& A^{-1} A X=A^{-1} B \\
& I X=A^{-1} B \\
& X=A^{-1} B
\end{aligned}
$$

STEP 2 :

$$
X=A^{-1} B
$$

$$
\begin{aligned}
& A A^{-1}=1 \\
& \left(\begin{array}{ll}
3 & 1 \\
2 & 3
\end{array}\right) A^{-1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& R_{1}-R_{2} \\
& \left(\begin{array}{rr}
1 & -2 \\
2 & 3
\end{array}\right) A^{-1}=\left(\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right) \\
& R_{2}-2 R_{1} \\
& \left(\begin{array}{rr}
1 & -2 \\
0 & 7
\end{array}\right) A^{-1}=\left(\begin{array}{rr}
1 & -1 \\
-2 & 3
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{7}\left(\begin{array}{rr}
3 & -1 \\
-2 & 3
\end{array}\right)\binom{3}{-5} \\
& =\frac{1}{7}\binom{9+5}{-6-15}
\end{aligned}
$$

$$
=\frac{1}{7}\binom{14}{-21}
$$

$$
\binom{x}{y}=\binom{2}{-3}
$$

$$
\mathrm{R}_{2} / 7
$$

$$
x=2 \& y=-3
$$

$$
\left[\begin{array}{rr}
1 & -2 \\
0 & 1
\end{array}\right) \quad A^{-1}=\left(\begin{array}{rr}
1 & -1 \\
-\frac{2}{7} & \frac{3}{7}
\end{array}\right)
$$

$$
\left[\begin{array}{rr}
1 & -2 \\
0 & 1
\end{array}\right] \quad A^{-1}=\frac{1}{7}\left(\begin{array}{rr}
7 & -7 \\
-2 & 3
\end{array}\right)
$$

$$
R_{1}+2 R_{2}
$$

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] A^{-1}=\frac{1}{7}\left[\begin{array}{rr}
3 & -1 \\
-2 & 3
\end{array}\right)
$$

2. Using the truth table, examine whether the statement pattern

$$
(p \rightarrow q) \leftrightarrow(\sim p \vee q)
$$

is a tautology, a contradiction or a contingency

SOLUTION

p	q	$\sim p$	$p \rightarrow q$	$\sim p \vee q$	$(p \rightarrow q) \leftrightarrow(\sim p \vee q)$
T	T	F	T	T	T
T	F	F	F	F	T
F	T	T	T	T	T
F	F	T	T	T	T

Since all the truth values in the last column are ' T ', the statement is a TAUTOLOGY
03. Demand function x, for a certain commodity is given as $x=200-4 p$ where p is the unit price. Find elasticity of demand when $p=10$, interpret your result
solution
STEP 1: $\quad \mathrm{x}=200-4 \mathrm{p}$

$$
\frac{d x}{d p}=-4
$$

STEP 2: $\quad \eta=\frac{-P}{D} \cdot \frac{d D}{d p}$

$$
=\frac{-p}{x} \cdot \frac{d x}{d p}
$$

$$
=\frac{-p}{200-4 p} \cdot-4
$$

$$
=\frac{p}{50-p}
$$

STEP 3: $\left.\quad \eta\right|_{p=10}=\frac{10}{50-10}$

$$
\begin{aligned}
& =\frac{10}{40} \\
& =0.25<1
\end{aligned}
$$

Demand is relatively inelastic

(B) Attemptany TWO of the following

1. Find the area of the ellipse : $\frac{x^{2}}{4}+\frac{y^{2}}{25}=1$

$\frac{x^{2}}{4}+\frac{y^{2}}{25}=1$

$$
\frac{y^{2}}{25}=1-\frac{x^{2}}{4}
$$

$=10\left\{\left(\frac{2}{2} \sqrt{2^{2}-2^{2}}+2 \sin ^{-1}\left(\frac{2}{2}\right)\right)\right.$
$\left.-\left\{\frac{0}{2} \sqrt{2^{2}-0^{2}}+2 \sin ^{-1}\left(\frac{0}{2}\right)\right]\right\}$
$=10\left[0+2 \sin ^{-1}(1)\right)-\left(0+2 \sin ^{-1}(0)\right)$
$=10\left(2 \times \frac{\pi}{2}\right)$

$$
\frac{y^{2}}{25}=\frac{4-x^{2}}{4}
$$

$=10 \pi$ sq. units

$$
y^{2}=\frac{25}{4}\left(4-x^{2}\right)
$$

$$
y=\frac{5 \sqrt{4-x^{2}}}{2}
$$

Area of Ellipse
$=4\left(\int_{0}^{2} y d x\right)^{2} \ldots \ldots$. BY SYMMETRY
$=4 \int_{0}^{2} \frac{5}{2} \sqrt{4-x^{2}} d x$
$=10 \int_{0}^{2} \sqrt{2^{2}-x^{2}} d x$
$=10\left[\frac{x}{2} \sqrt{2^{2}-x^{2}}+\frac{2^{2}}{2} \sin ^{-1}\left(\frac{x}{2}\right)\right]_{0}^{2}$
02. Evaluate : $\int x \cdot \tan ^{-1} x d x$

SOLUTION

$=\int \tan ^{-1} x \cdot x d x$
$=\tan ^{-1} x \int x d x-\int\left(\frac{d}{d x} \tan ^{-1} x \int x d x\right) d x$
$=\tan ^{-1} x \cdot \frac{x^{2}}{2}-\int \frac{1}{1+x^{2}} \cdot \frac{x^{2}}{2} d x$
$=\frac{x^{2}}{2} \cdot \tan ^{-1} x-\frac{1}{2} \int \frac{x^{2}}{1+x^{2}} d x$
$=\frac{x^{2}}{2} \cdot \tan ^{-1} x-\frac{1}{2} \int \frac{1+x^{2}-1}{1+x^{2}} \cdot d x$
$=\frac{x^{2}}{2} \cdot \tan ^{-1} x-\frac{1}{2} \int 1-\frac{1}{1+x^{2}} . d x$
$=\frac{x^{2}}{2} \cdot \tan ^{-1} x-\frac{1}{2}\left(x-\tan ^{-1} x\right)+c$
$=\frac{x^{2}}{2} \cdot \tan ^{-1} x-\frac{x}{2}+\frac{\tan ^{-1} x}{2}+c$
03. Cost of assembling x wallclocks is $\left(\frac{x^{3}}{3}-40 x^{2}\right)$ and labor charges are $500 x$.

Find the number of wallclocks to be manufactured for which marginal cost is minimum
SOLUTION

STEP 1: MARGINAL COSt C_{M}

$$
\begin{aligned}
C & =\frac{x^{3}}{3}-40 x^{2}+500 x \\
C_{M} & =\frac{d C}{d x} \\
& =x^{2}-80 x+500
\end{aligned}
$$

STEP 2 :

$$
\begin{aligned}
& \frac{d C_{M}}{d x}=2 x-80 \\
& \frac{d^{2} C_{M}}{d x^{2}}=2
\end{aligned}
$$

STEP 3 :

$$
\begin{aligned}
\frac{d C_{M}}{d x} & =0 \\
2 x-80 & =0 \\
x & =40
\end{aligned}
$$

STEP 4 :

$$
\left.\frac{d^{2} C_{M}}{d x^{2}}\right|_{x=20}=2>0
$$

Marginal cost is minimum at $x=20$

Q3. (A) Attempt any TWO of the following

1. Write Converse - Contrapositive \& Inverse statements for the given conditional statement
if the triangles are not congruent then their areas are not equal SOLUTION :

LET $\quad \mathbf{P} \rightarrow \mathbf{Q} \equiv$ if the triangles are not congruent then their areas are not equal

CONVERSE $: ~ Q \rightarrow P$
If the areas of triangles are not equal then they are not congruent

CONTRAPOSITIVE: $\sim \mathbf{Q} \rightarrow \boldsymbol{\sim} \mathbf{P}$
If the areas of the triangles are equal then they are congruent

INVERSE $: ~ \sim P \rightarrow \sim Q$
If the two triangles are congruent then their areas are equal
02. find a \& b if $f(x)$ is continuous at $x=0$

$$
\begin{array}{rlrl}
f(x) & =\frac{e^{2 x}-1}{a x} & & ; x<0, a \neq 0 \\
& =1 & ; x=0 \\
& =\frac{\log (1+7 x)}{b x} & ; x>0, b \neq 0
\end{array}
$$

SOLUTION
Step 1
$\operatorname{Lim}_{x} f(x)$
$x \rightarrow 0-$
$=\operatorname{Lim}_{x \rightarrow 0} \frac{e^{2 x}-1}{a x}$
$=\operatorname{Lim}_{x \rightarrow 0} \frac{1}{a} \frac{e^{2 x}-1}{x}$
$=\operatorname{Lim}_{x \rightarrow 0} \frac{2}{a} \frac{e^{2 x}-1}{2 x}$
$=\frac{2 . l o g e}{a}$
$=\quad 2 / a$

STEP 2

Lim
$x \rightarrow 0+$
$=\operatorname{Lim}_{x \rightarrow 0} \frac{\log (1+7 x)}{b x}$
$=\operatorname{Lim}_{x \rightarrow 0} \frac{1}{b} \frac{\log (1+7 x)}{x}$
$=\operatorname{Lim}_{x \rightarrow 0} \frac{7}{b} \frac{\log (1+7 x)}{7 x}$
$=\quad \frac{7}{b}(1)$
$=\quad \frac{7}{b}$

STEP 3

$f(0)=1 \ldots \ldots \ldots$ given

STEP 4

Since f is continuous at $x=0$

$$
\operatorname{Lim}_{x \rightarrow 0_{-}} f(x)=\operatorname{Lim}_{x \rightarrow 0^{+}} f(x)=f(0)
$$

$$
\frac{2}{a}=\frac{7}{b}=1
$$

$$
\therefore \quad a=2 \quad \& \quad b=7
$$

(B) Attempt any TWO of the following

1. $\pi / 3$

$$
\int_{\pi / 6}^{13} \frac{1}{1+\sqrt[3]{\cot x}} d x
$$

$I=\int_{\pi / 6}^{\pi / 3} \frac{1}{1+\sqrt[3]{\cot x}} d x$
$1=\int_{\pi / 6}^{\pi / 3} \frac{\sqrt[3]{\sin x}}{\sqrt[3]{\sin x}+\sqrt[3]{\cos x}} d x$

USING $\int_{a}^{b} f(x) d x=\int_{b}^{b} f(a+b-x) d x$
$1=\int_{\pi / 6}^{\pi / 3} \frac{\sqrt[3]{\sin (\pi / 2-x)}}{\sqrt[3]{\sin (\pi / 2-x)}+\sqrt[3]{\cos (\pi / 2-x)}}$
$1=\int_{\pi / 6}^{\pi / 3} \frac{\sqrt[3]{\cos x}}{\sqrt[3]{\cos x+\sqrt[3]{\sin x}}}$ $d x \quad$... (2
$(1)+(2)$
$21=\int_{\pi / 6}^{\pi / 3} \frac{\sqrt[3]{\sin x}+\sqrt[3]{\cos } x}{\sqrt[3]{\sin x}+\sqrt[3]{\cos x}} d x$
$21=\int_{\pi / 6}^{\pi / 3} 1 d x$

$$
21=\frac{\pi}{3}-\frac{\pi}{6}
$$

$21=\frac{2 \pi-\pi}{6}$
$21=(x)_{\pi / 6}^{\pi / 3}$
$1=\frac{\pi}{12}$
02. $\int_{0}^{\pi / 2} x^{2} \cdot \sin x d x$
$=\left\{x^{2} \int \sin x d x-\int\left(\frac{d x^{2}}{d x} \int \sin x d x\right) d x\right\}^{\pi / 2}$
$=\left\{x^{2} \cdot-\cos x-\int 2 x \cdot-\cos x d x\right\} \begin{aligned} & \pi / 2 \\ & 0\end{aligned}$
$=\left\{-x^{2} \cdot \cos x+2 \int x \cdot \cos x d x\right\}^{\pi / 2}$
$=\left\{-x^{2} \cdot \cos x+2\left(x \int \cos x d x-\int\left(\frac{d}{d x} x \int \cos x d x\right) d x\right\}_{0}^{\pi / 2}\right.$
$=\left\{-x^{2} \cdot \cos x+2\left(x \cdot \sin x-\int 1 \cdot \sin x d x\right)\right\}_{0}^{\pi / 2}$
$=\left\{-x^{2} \cdot \cos x+2\left(x \cdot \sin x-\int \sin x d x\right)\right\}_{0}^{\pi / 2}$
$=\left\{-x^{2} \cdot \cos x+2(x \cdot \sin x+\cos x)^{\pi / 2}\right.$
$=\left\{-x^{2} \cdot \cos x+2 x \cdot \sin x+2 \cos x\right\}_{0}^{\pi / 2}$
$=\left(\frac{-\pi^{2}}{4} \cdot \cos \frac{\pi}{2}+2 \frac{\pi}{2} \cdot \sin \frac{\pi}{2}+2 \cos \frac{\pi}{2}\right)-(-0 \cdot \cos 0+2(0) \cdot \sin 0+2 \cos 0)$
$=[0+\pi(1)+0)-(0+0+2(1)]$
$=\pi-2$
03. Express the following equations in matrix form and solve them by method of inversion

$$
2 x-y+z=1 ; \quad x+2 y+3 z=8 \quad ; \quad 3 x+y-4 z=1
$$

$$
\begin{aligned}
& 2 x-y+z=1 \\
& x+2 y+3 z=8 \\
& 3 x+y-4 z=1
\end{aligned}
$$

STEP 1 :

$$
\begin{aligned}
& \left(\begin{array}{rrr}
2 & -1 & 1 \\
1 & 2 & 3 \\
3 & 1 & -4
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
1 \\
8 \\
1
\end{array}\right) \\
& A X=B \\
& A^{-1} A X=A^{-1} B \\
& I X \quad=A^{-1} B \\
& X \quad=A^{-1} B
\end{aligned}
$$

STEP 2 :

$$
A=\left(\begin{array}{rrr}
2 & -1 & 1 \\
1 & 2 & 3 \\
3 & 1 & -4
\end{array}\right)
$$

COFACTOR'S
$\mathrm{A}_{11}=(-1)^{1+1}\left|\begin{array}{rr}2 & 3 \\ 1 & -4\end{array}\right|=1(-8-3)=-11$

$$
A_{23}=(-1)^{2+3}\left|\begin{array}{cc}
2 & -1 \\
3 & 1
\end{array}\right|=-1(2+3)=-5
$$

A_{12}
$=(-1)^{1+2}\left|\begin{array}{rr}1 & 3 \\ 3 & -4\end{array}\right|=-1(-4-9)=13$

$$
A_{31}=(-1)^{3+1}\left|\begin{array}{cc}
-1 & 1 \\
2 & 3
\end{array}\right|=1(-3-2)=-5
$$

$\mathrm{A}_{13}=(-1)^{1+3}\left|\begin{array}{cc}1 & 2 \\ 3 & 1\end{array}\right|=1(1-6)=-5$

$$
\text { A32 }=(-1)^{3+2}\left|\begin{array}{ll}
2 & 1 \\
1 & 3
\end{array}\right|=-1(6-1)=-5
$$

$\mathrm{A}_{21}=(-1)^{2+1}\left|\begin{array}{cc}-1 & 1 \\ 1 & -4\end{array}\right|=-1(4-1)=-3$ A33 $=(-1)^{3+3}\left|\begin{array}{rr}2 & -1 \\ 1 & 2\end{array}\right|=1(4+1)=5$

A22 $=(-1)^{2+2}\left|\begin{array}{rr}2 & 1 \\ 3 & -4\end{array}\right|=1(-8-3)=-11$

COFACTOR MATRIX OF A

$$
\left(\begin{array}{rrr}
-11 & 13 & -5 \\
-3 & -11 & -5 \\
-5 & -5 & 5
\end{array}\right)
$$

$\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)$

ADJ A $\quad=\quad$ TRANSPOSE OF THE COFACTOR MATRIX

$$
=\left(\begin{array}{ccr}
-11 & -3 & -5 \\
13 & -11 & -5 \\
-5 & -5 & 5
\end{array}\right)
$$

|A|

$$
\begin{aligned}
& =2(-8-3)+1(-4-9)+1(1-6) \\
& =2(-11)+1(-13)+1(-5) \\
& =\quad-22-13-5=-40
\end{aligned}
$$

$\mathbf{A}^{-\mathbf{1}}=\frac{1}{|\mathrm{~A}|} \cdot \operatorname{adj} \mathrm{A}$

$$
\begin{aligned}
& =-\frac{1}{40}\left(\begin{array}{rrr}
-11 & -3 & -5 \\
13 & -11 & -5 \\
-5 & -5 & 5
\end{array}\right) \\
& =\frac{1}{40}\left(\begin{array}{rrr}
11 & 3 & 5 \\
-13 & 11 & 5 \\
5 & 5 & -5
\end{array}\right)
\end{aligned}
$$

STEP 3 :

$$
X=A^{-1} B
$$

$x=1, y=2 \& z=1$
$S S:\{1,2,1\}$
rer

BY EQUALITY OF TWO MATRICES

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\frac{1}{40}\left(\begin{array}{ccr}
11 & 3 & 5 \\
-13 & 11 & 5 \\
5 & 5 & -5
\end{array}\right)\left(\begin{array}{l}
1 \\
8 \\
1
\end{array}\right)
$$

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\frac{1}{40}\left(\begin{array}{r}
11+24+5 \\
-13+88+5 \\
5+40-4
\end{array}\right)
$$

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\frac{1}{40}\left(\begin{array}{l}
40 \\
80 \\
10
\end{array}\right)
$$

Q4. (A)Attempt any six of the following

1. the pdf of continuous random variable X is given by

$$
\begin{array}{rlrl}
f(x) & =\frac{x}{8} & & 0<x<4 \\
& =0 & & \\
& \quad \text { otherwise. Find } P(2<x<3)
\end{array}
$$

SOLUTION :
the pdf of continuous random variable X is given by

$$
\begin{aligned}
f(x) & =\frac{x}{8} & & \\
& =0 & &
\end{aligned}
$$

$$
\begin{aligned}
& P(2<X<3) \\
&=\int_{2}^{3} \frac{x}{8} d x
\end{aligned}
$$

$$
=\left(\frac{x^{2}}{16}\right)_{2}^{3}
$$

$$
=\left(\frac{9}{16}\right)-\left(\frac{4}{16}\right)
$$

$$
=\frac{5}{16}
$$

2. What is the sum due of $₹ 5,000$ due 4 months hence at 12.5% p.a. simple interest SOLUTION :

$$
\begin{aligned}
S D & =P W+\text { Interest on PW } \\
S D & =5000+5000 \times \frac{12.5}{100} \times \frac{4}{12} \\
& =5000+208.33 \\
& =₹ 5208.33
\end{aligned}
$$

3. for a bivariate data $b_{y x}=-1.2$ and $b x y=-0.3$.

Find correlation coefficient between x and y
SOLUTION :

$$
\begin{aligned}
r^{2} & =b y x \times b x y \\
& =\frac{-12}{10} \times \frac{-3}{10} \\
& =\frac{36}{100}
\end{aligned}
$$

4. Anandi and Rutuja invested ₹ 10,000 each in a business. Anandi withdrew her capital after 7 months. Rutuja continued for the year. After one year the profit earned by them was ₹ 5,700 . Find the profit by each person

SOLUTION :
Profits will be shared in the ratio of 'PERIOD OF INVESTMENT'

$$
\begin{aligned}
& \text { PSR : Anandi Rutuja } \\
& 7: 12 \\
& \text { Anandi's share in profit }=\frac{7}{19} \times 5700=₹ 2100 \\
& \text { Rutuja's share in profit }=\frac{12}{19} \times 5700=₹ 3600
\end{aligned}
$$

5. Compute the age specific death rate for the following SOLUTION :

Age Group	No. of persons In '000	No. of deaths	SDR $=\frac{D}{P}$ (DEATHS PER 000)
Below 5	15	360	$\frac{360}{15}=24$
$5-30$	20	400	$\frac{400}{20}=20$
Above 30	10	280	$\frac{280}{10}=28$

6.

$x=x$	-1	0	1
$P(x)$	-0.2	1	0.2

Verify whether the above function can be regarded as p.m.f.
solution :

$$
P(-1)=-0.2 \quad \text { Since } p(x) \geq 0 \quad \forall x \text {, the function is not a pmf }
$$

7. SOLUTION :
a) MARGINAL FREQUENCY DISTRIBUTION OF AGE OF HUSBANDS

CI	$20-30$	$30-40$	$40-50$	$50-60$	TOTAL
F	5	20	44	24	93

b) CONDITIONALMARGINAL FREQUENCY DISTRIBUTION OF AGE OF HUSBANDS WHEN AGE WIVES LIES IN 25 - 35

CI	$20-30$	$30-40$	$40-50$	$50-60$	TOTAL
F	0	10	25	2	37

8. from the regression equations: $y=4 x-5$ and $3 x=2 y+5$.
find \bar{x} and \bar{y} ans: $\bar{x}=1 \& \bar{y}=-1$

Q5. (A) Attempt any Two of the following

1. From a lot of 25 bulbs of which 5 are defective a sample of 5 bulbs was drawn at random with replacement. Find the probability that the sample will contain
a) exactly 1 defective bulb
b) at least 1 defective bulb

SOLUTION

a lot of 25 bulbs : 5 defective, 20 non defective
5 bulbs are drawn at random with replacement , $\mathrm{n}=5$
For a trial Success - a defective bulb
p - probability of success $=5 / 25=1 / 5$
q - probability of failure $=1-1 / 5=4 / 5$
r.v. X - no of successes $=0,1,2,3,4,5$
$X \sim B(5,1 / 5)$
a) P (exactly 1 defective bulb)
$=P(X=1)$
$={ }^{5} C_{1} \cdot p^{1} \cdot q^{4}$
$={ }^{5} \mathrm{C}_{1}\left(\frac{1}{5}\right)^{1}\left(\frac{4}{5}\right)^{4}$
$=\frac{5.4^{4}}{5^{5}}$
$=\frac{256}{625}$
b) $P(a t$ least 1 defective bulb)
$=P(X \geq 1)$
$=P(1)+P(2)+$ \qquad $+P(5)$
$=1-P(0)$
$=1-{ }^{5} C_{0} \cdot p^{0} \cdot q^{5}$
$=1-{ }^{5} \mathrm{C}_{0}\left(\frac{1}{5}\right)^{0}\left(\frac{4}{5}\right)^{5}$
$=1-\frac{4^{5}}{5^{5}}$
$=1-\frac{1024}{3125}$
$=\frac{2101}{3125}$
02. The defects on a plywood sheet occur at random with an average of one defect per 50 sq. feet. What is the probability that such sheet will have
a) no defects
b) at least one defect
(Given: $\mathrm{e}^{-1}=0.3678$)
SOLUTION
$\mathrm{m}=$ average number of defects in a ply wood sheet $=1$
r.v $X \sim P(1)$
$P($ sheet will have no defects)
$=P(0)$
$=\frac{e^{-1} 10}{0!}$ Using $P(x)=\frac{e^{-m} \cdot m^{x}}{x!}$
$=e^{-1} .(1)$
$=0.3678$
$P($ sheet will have at least 1 defect)
$=P(x \geq 1)$
$=P(1)+P(2)+$ \qquad
$=1-P(0)$
$=1-0.3678$
$=0.6322$
03. Find the true discount, banker's discount and banker's gain on a bill of $₹ 36,600$ due 4 months hence at 5% p.a.
solution
STEP 1 :

$$
\begin{aligned}
\mathrm{FV} & =\mathrm{PW}+\text { Int on PW for } 4 \text { months @ } 5 \% \text { p.a. } \\
36600 & =\mathrm{PW}+\mathrm{PW} \times \frac{4}{12} \times \frac{5}{100} \\
36600 & =\mathrm{PW}+\frac{\mathrm{PW}}{60} \\
36600 & =\frac{61}{60} \mathrm{PW} \\
& =\frac{36600 \times 60}{61} \\
\text { PW } & =₹ 36,000
\end{aligned}
$$

STEP 2 :
TD = Int on PW for 4 months @ 5% p.a.
$=36000 \times \frac{4}{12} \times \frac{5}{100}$
$=₹ 600$

STEP 3 :
$B D=$ Int on FV for 4 months @ 5% p.a.
$=36600 \times \frac{4}{12} \times \frac{5}{100}$
$=₹ 610$

STEP 4 :

$$
\begin{aligned}
B G & =B D-T D \\
& =610-600 \\
& =₹ 10
\end{aligned}
$$

(B) Attempt any Two of the following

1. a car valued at ₹ $4,00,000$ is insured for $₹ 2,50,000$. The rate of premium is 5% less 20% How much loss does the owner bear including premium, if the value of the car is reduced to 60% of its original value
solution

Value of car	$=₹ 4,00,000$
Insured value	$=₹ 2,50,000$
Rate of premium	$=5 \%$ less 20%.
Premium	$=\frac{5}{100} \times 2,50,000$
	$=₹ 12,500$
less 20% disc	$-2,500$
Net Premium	$=₹ 10,000$

Since the value of the car is reduced to 60% of its original value, the loss on the car is 40\%

$$
\begin{aligned}
\underline{\text { Loss }} & =\frac{40}{100} \times 4,00,000 \\
& =₹ 1,60,000
\end{aligned}
$$

Claim
$=\frac{\text { insured val. }}{\text { Property val }} \times$ loss
$=\underline{2,50,000} \times 1,60,000$
4,00,000
$=₹ 1,00,000$

Loss	$=$	$1,60,000$
Less claim	$-1,00,000$	
Net loss	$=$	60,000
Add premium	+	10,000

Net loss
Incl. premium $=₹ 70,000$

$\begin{gathered} \text { AGE } \\ \mathbf{x} \end{gathered}$	$l \mathrm{x}$	$\mathrm{dx}=l \mathrm{x}-l \mathrm{x}+1$	$\mathrm{qx}=\frac{\mathrm{dx}}{l \mathrm{x}}$	px $=1 \mathbf{1 - q x}$	$\mathrm{Lx}=\frac{l \mathrm{x}+l \mathrm{x}+1}{2}$	Tx	$\mathbf{e}_{\mathrm{x}}{ }^{0}=\frac{\mathrm{Tx}}{l \mathbf{x}}$
0	1000	$1000-850=150$	$\frac{150}{1000}=0.15$	$1-0.15=0.85$	$850+75=925$	2495	$\frac{2495}{1000}=2.495$
1	850	$850-760=90$	$\frac{90}{850}=0.1059$	$1-0.1059=0.8941$	$760+45=805$	1570	$\frac{1570}{850}=1.847$
2	760	$760-360=400$	$\frac{400}{760}=0.5264$	$1-0.5264=0.4736$	$360+200=560$	765	$\frac{765}{760}=1.007$
3	360	$360-25=335$	$\frac{335}{360}=0.9305$	$1-0.9305=0.0695$	$25+167.5=192.5$	205	$\frac{205}{360}=0.5696$
4	25	$25-0=25$	$\frac{25}{25}=1$	$1-1=0$	$0+12.5=12.5$	12.5	$\frac{12.5}{25}=0.5$
5	0	----	----	----	----	----	----

LOG CALCULATIONS FOR 'qX'

LOG $90-$ LOG 850	LOG $400-$ LOG 760	LOG $335-$ LOG 360
1.9542	2.6021	2.5250
-2.9294		
AL $\overline{1.0248}$	$\frac{-}{\text { AL } \overline{1} .7213}$	$\frac{-2.5808}{\text { AL } \overline{1.9687}}$
0.1059	0.5264	0.9305

log calculations for 'e $\mathbf{e x}^{\mathbf{0}}{ }^{\prime}$

LOG $1570-$ LOG 850	LOG $765-$ LOG 760	LOG $205-$ LOG 360
3.1959	2.8837	2.3118
-2.9294	-2.8808	-2.5563
AL 0.2665	$A L 0.0029$	AL $\overline{1.7555}$
1.847	1.007	0.5696

3. a person makes two types of gift items A and B requiring the services of cutter and a finisher. Gift item A requires 4 hours of cutter's time and 2 hours of finisher's time. Gift item B requires 2 hours of cutter's time and 4 hours of finisher's time. The cutter and finisher have 208 hours and 152 hours available time respectively every month. The profit on one gift item of type A is $₹ 75$ and on the gift item B is $₹ 125$. Assuming that a person can sell all the gift items produced, determine how many gift items of each type should he make every month to obtain the best returns

TABULATION:

No of units mfg	ITEM A	ITEM B	
	Maximum Available Time (in hrs)		
CUTTIING	Time reqd/unit (in hrs)		208
FINISHING	4	2	152
Profit / unit	2	4	$125 /-$

CONSTRAINT

1. Since cutter has 208 hours, $4 x+2 y \leq 208$
2. Since finisher has 152 hours, $2 x+4 y \leq 152$
3. Since x and y are no of units manufactured, cannot be -ve

$$
x, y \geq 0
$$

OBJECTIVE FUNCTION

Total profit $=75 x+125 y$ (in rupees)
\therefore Maximize $z=75 x+125 y$

LPP MODEL

[^0]

CORNERS	$Z=75 x+125 y$
O(0,0)	$Z=75(0)+125(0)=0$
$A(0,38)$	$Z=75(0)+125(38)=4750$
$B(44,16)$	$Z=75(44)+125(16)=3300+2000=5300$
$C(52,0)$	$Z=75(52)+125(0)=3900$

OPTIMAL SOLUTION

person needs to make 44 units of item $A \& 16$ units of item B to make a maximum Profit of ₹ 5300

1. John and Mathew started a business with their capitals in the ratio 8 : 5 . After 8 months, John added 25% of his earlier capital as further investment. At the same time Mathew withdrew 20% of his earlier capital. At the end of the year, they earned Rs 52,000 as profit. How should they divide the profit between them

SOLUTION

PARTNER'S NAME	CAPITAL INVESTED	PERIOD OF INVESTMENT
P	$₹ 8 k$	8
$+25 \%$	$₹ 2 k$	MONTHS
	$₹ 10 \mathrm{k}$	4
Q MONTHS		
Q	$₹ 5 k$	8
-20%	$₹ k$	MONTHS
	$₹ 4 k$	4

STEP 1 :
Profits will be shared in the
'RATIO OF PRODUCT OF CAPITAL INVESTED \& PERIOD OF INVESTMENT'

STEP 2 :

Total profit $=₹ 52,000$

$$
\begin{aligned}
\text { P's share of profit } & =\frac{13}{20} \times 52000 \\
& =₹ 33,800
\end{aligned}
$$

$$
\begin{aligned}
\text { Q's share of profit } & =\frac{7}{20} \times 52,000 \\
& =₹ 19,200
\end{aligned}
$$

2. Find mean and variance of the continuous random variable X whose p.d.f is given as

$$
\begin{aligned}
f(x) & =6 x(1-x) & & 0<x<1 \\
& =0 & & \text { otherwise }
\end{aligned}
$$

SOLUTION
i) $E(X)=\int_{0}^{1} x \cdot f(x) d x$
$=6 \int_{0}^{1}\left(x^{3}-x^{4}\right) d x-\frac{1}{4}$
$=\int_{0}^{1} x .6 x(1-x) d x$
$=6\left(\frac{x^{4}}{4}-\frac{x^{5}}{5}\right)_{0}^{1}-\frac{1}{4}$
$=6 \int_{0}^{1} x^{2}(1-x) d x$
$=6\left(\frac{1}{4}-\frac{1}{5}\right)-\frac{1}{4}$
$=6 \int_{0}^{1}\left(x^{2}-x^{3}\right) d x$
$=6\left(\frac{1}{20}\right)-\frac{1}{4}$
$=6\left(\frac{x^{3}}{3}-\frac{x^{4}}{4}\right)^{1}$
$=6\left(\frac{1}{3}-\frac{1}{4}\right)$
$=\frac{12-10}{40}$
$=6\left(\frac{1}{12}\right)$
$=\quad \frac{1}{20}$
$=\quad \frac{1}{2}$
$=0.05$
$=0.5$
i) $\operatorname{Var}(X)=\int_{0}^{1} x^{2} \cdot f(x) d x-(E(X))^{2}$

$$
\begin{aligned}
& =\int_{0}^{1} x^{2} .6 x(1-x) d x-\frac{1}{4} \\
& =6 \int_{0}^{1} x^{3}(1-x) d x-\frac{1}{4}
\end{aligned}
$$

3. For bi - variate data $\bar{x}=53$ and $\bar{y}=28$, byx $=-1.5, b x y=-0.2$

Find a) correlation coefficient between x and y
b) Estimate Y for $X=50$
c) Estimate X for $Y=25$

solution

a) $Y O N X$
$y-\bar{y}=\operatorname{byx}(x-\bar{x})$
$y-28=-1.5(x-53)$
$y-28=-1.5(50-53)$
$y-28=-1.5(-3)$
$y-28=4.5$

$$
y=32.5 \text { for } x=50
$$

a) $\quad X O N Y$
$x-\bar{x}=b x y(y-\bar{y})$
$x-53=-0.2(x-28)$
$x-53=-0.2(25-28)$
$x-53=-0.2(-3)$
$x-53=0.6$

$$
x=53.6 \text { for } y=25
$$

1.

		ANTIBIOTICS				
		A	B	C	D	E
	C_{1}	27	18	---	20	21
CAPSUALTION	C_{2}	31	24	21	12	17
MACHINES	C_{3}	20	17	20	---	16
	C_{4}	21	28	20	16	27

27	18	M	20	21	- add a DUMMY machine C5 to balance
31	24	21	12	17	the matrix
20	17	20	M	16	$-M$ is a very large number such that
21	28	20	16	27	M - any number $=M$
0	0	0	0	0	

9	0	M	2	3	- Reducing the matrix using
19	12	9	0	5	'ROW MINIMUM'
4	1	4	M	0	
5	12	4	0	11	
0	0	0	0	0	
9	0	M	2	3	- Allocation using
19	12	9	0	5	'SINGLE ZERO ROW- COLUMN METHOD'
4	1	4	M	0	
5	12	4	W	11	- since allocation is incomplete we need
0	*	W	X	W	to revise the matrix

9	0	M	6	3
15	8	5	0	1
4	1	4	M	0
1	8	0	0	7
0	0	0	4	0

- Drawing minimum lines to cover all the existing zeros

9	0	M	6	3	- Reallocation
15	8	5	0	1	- Since each row now contains one
4	1	4	M	0	
1	8	0	$\not 2$	7	assigned zero, the assignment problem
0	$\not 2$	$\not 2$	4	$\not 2$	is solved
0	$\not Q$				

Optimal Assignment
$C_{1}-\mathrm{B}, \mathrm{C}_{2}-\mathrm{D}, \mathrm{C}_{3}-\mathrm{E}, \mathrm{C}_{4}-\mathrm{C}, \mathrm{C}_{5}-\mathrm{A}(\mathrm{DUMmy}), \min$ cost $=66$
02. Regression of two series are
$2 x-y-15=0 \& 3 x-4 y+25=0$ Find mean of x and y and also the coefficient of correlation

STEP 1

ASSUME
$X O N Y: 2 x-y-15=0$

$$
2 x=y+15
$$

$$
x=\frac{1}{2} y+\frac{15}{2}
$$

$$
b x y=\frac{1}{2}
$$

$$
Y O N X: 3 x-4 y+25=0
$$

$$
4 y=3 x+25
$$

$$
y=\frac{3}{4} x+\frac{25}{4}
$$

$$
\text { byx }=\frac{3}{4}
$$

STEP 2

$$
\begin{aligned}
r^{2} & =b x y \cdot b y x \\
& =\frac{1}{2} \times \frac{3}{4} \\
& =\frac{3}{8}
\end{aligned}
$$

Since $0 \leq r^{2} \leq 1$
Our assumptions are correct

$$
\begin{aligned}
& r= \pm \sqrt{\frac{3}{8}} \\
& r=+\sqrt{\frac{3}{8}} \quad \begin{array}{r}
\text { (byx \& bxy } \\
\text { are }+v e)
\end{array} \\
& r \quad
\end{aligned}
$$

$$
\begin{aligned}
\log r & =\frac{1}{2}(\log 3-\log 8) \\
\log r & =\frac{1}{2}(0.4771-0.9031) \\
\log r & =\frac{0.4771}{2}-\frac{0.9031}{2} \\
\log r & =0.2386-0.4516 \\
\log r & =\frac{1}{1} .7870 \\
r & =A L(\overline{1} .7870) \\
r & =0.6124
\end{aligned}
$$

STEP 3

MEANS

$$
2 x-y=15 \times 4
$$

$$
3 x-4 y=-25
$$

$$
8 x-4 y=60
$$

$$
\begin{array}{ll}
3 x-4 y & =-25 \\
\hline 5 x & =85
\end{array}
$$

subs in (1) $y=19$
03.

x	$:$	9	7	6	8	5
y	$:$	19	17	16	18	15 . Find Karl Pearson's Correlation coeff.

x	y	$x-\bar{x}$	$y-\bar{y}$	$(x-\bar{x})^{2}$	$(y-\bar{y})^{2}$	$(x-\bar{x})(y-\bar{y})$
9	19	2	2	4	4	4
7	17	0	0	0	0	0
6	16	-1	-1	1	1	1
8	18	1	1	1	1	1
5	15	-2	-2	4	4	4
35	85	0	0	10	10	10
Σx	Σy	$\Sigma(x-\bar{x})$	$\Sigma(y-\bar{y})$	$\Sigma(x-\bar{x})^{2}$	$\Sigma(y-\bar{y})^{2}$	$\Sigma(x-\bar{x})(y=\bar{y})$
$\bar{x}=7$	$\bar{y}=17$					

$$
\begin{aligned}
& r=\frac{\Sigma(x-\bar{x}) \cdot(y-\bar{y})}{\sqrt{\Sigma(x-\bar{x})^{2}} \sqrt{\Sigma(y-\bar{y})^{2}}} \\
& r=\frac{10}{\sqrt{10 x \sqrt{ } 10}} \\
& r=1
\end{aligned}
$$

[^0]: Maximize $z=75 x+125 y$
 Subject to : $4 x+2 y \leq 208,2 x+4 y \leq 152, x, y \geq 0$

