

03.	Discuss th	e continuity of functior	n f at x = 0			
	f ($(x) = \sqrt{4 + x - 2}$;	x ≠ 0			
		3x				
		= 1/12 ;	x = 0			
	SOLUTION					
	Step 1					
	$\begin{array}{ll} \text{Lim} & f(x) \\ x \rightarrow 0 \end{array}$					
	= Lim	$\sqrt{4 + x} - 2$				
	$x \rightarrow 0$	3x				
	= Lim $x \rightarrow 0$	$\frac{\sqrt{4 + x} - 2}{3x} \frac{\sqrt{4 + x} + 2}{\sqrt{4 + x} + 2}$				
	= Lim	4 + x - 4 1				
	$x \rightarrow 0$	$3x \sqrt{4 + x + 2}$				
	= Lim	<u>k</u> <u>1</u>				
	$x \rightarrow 0$	$3 \sqrt{4 + x} + 2$	x ≠ 0			
	= Lim	$\frac{1}{1}$ $\frac{1}{1}$				
	$x \rightarrow 0$	$3 \sqrt{4 + x + 2}$				
	=	$\frac{1}{3}$ $\frac{1}{\sqrt{4+0}}$ + 2				
	=	$\frac{1}{3} \frac{1}{2+2}$				
	=	<u>1</u>				
	Step 2 :	12				
	f(0) = 1/12 given					
	(U) - 1/12					
	Step 3 :					
	f(0) = Lin	m f(x) ; f is continuou ₃0	s at x = 0			
	X					
04.	the total r	revenue R = $720x - 3x^2$	where x is nun	nber of items sold . Find x for which total		
	revenue R	is increasing				
	SOLUTION	$R = 720x - 3x^2$				
		For Revenue increasi	ng			
		dR > 0				
		dx		120 × X		
		720 - 6x > 0				
		720 > 6x		x < 120		

05. Express the truth of each of the following statements using Venn Diagram

- 1. All teachers are scholars and scholars are teachers
- T ≡ set of all teachers
- **O** = set of all scholars
- **U** = set of all human beings

2. if a quadrilateral is a rhombus then it is a parallelogram

- **R** = set of all rhombus
- P ≡ set of all parallelograms
- **U** = set of all quadrilaterals

06. Write negations of the following statements

a) the number 6 is an even number or the number 25 is a perfect square

Using $\sim (P \lor Q) \equiv \sim P \land \sim Q$

Negation : 6 is not an even number and 25 is not a perfect square

```
b) if x \in A \cap B, then x \in A and x \in B
Using \sim (P \rightarrow Q) = P \land \sim Q
Negation : x \in A \cap B and x \notin A \ OR \ x \notin B
```

```
07. Evaluate : \int \frac{1}{x(3 + \log x)} dx
SOLUTION
3 + \log x = t\frac{1}{x} dx = dt\int \frac{1}{t} dt\log |t| + c
```

_

Resubstitute

Log | 3 + log x | + c

08.
$$\begin{cases} 3 \begin{pmatrix} 1 & 2 & 0 \\ 0 & -1 & 3 \end{pmatrix}^{-} \begin{pmatrix} 1 & 5 & -2 \\ -3 & -4 & 4 \end{pmatrix} \end{cases} \begin{cases} 1 \\ 2 \\ 1 \end{pmatrix}.$$
 Simplify
SOLUTION

$$\begin{cases} \begin{pmatrix} 3 & 6 & 0 \\ 0 & -3 & 9 \end{pmatrix}^{-} \begin{pmatrix} 1 & 5 & -2 \\ -3 & -4 & 4 \end{pmatrix} \end{cases} \begin{cases} 1 \\ 2 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} 3 - 1 & 6 - 5 & 0 + 2 \\ 0 + 3 & -3 + 4 & 9 - 4 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} 2 & 1 & 2 \\ 3 & 1 & 5 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} 2 + 2 + 2 \\ 3 + 2 + 5 \end{pmatrix}$$

01. Solve the following equations by the invers $2x + 3y = -5$ and $3x + y = 3$	ion method
STEP 1 :	
$ \begin{pmatrix} 3 & 1 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3 \\ -5 \end{pmatrix} $	$1.A^{-1} = \frac{1}{7} \begin{bmatrix} 3 & -1 \\ -2 & 3 \end{bmatrix}$
AX = B	$A^{-1} = 1 \begin{pmatrix} 3 - 1 \end{pmatrix}$
$A = A^{-1}B$	$\overline{7}$ $\begin{bmatrix} -2 & 3 \end{bmatrix}$
$X = A^{-1}B$	STEP 3 :
STEP 2 :	$X = A^{-1}B$
$AA^{-1} = 1$	$= \frac{1}{7} \begin{pmatrix} 3 & -1 \\ -2 & 3 \end{pmatrix} \begin{pmatrix} 3 \\ -5 \end{pmatrix}$
$ \begin{pmatrix} 3 & 1 \\ 2 & 3 \end{pmatrix} A^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} $	$=\frac{1}{7} \left(\begin{array}{c} 9+5 \\ -7 \end{array} \right)$
$R_1 - R_2$	7 [-6-15]
$ \begin{pmatrix} 1 & -2 \\ 2 & 3 \end{pmatrix} A^{-1} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} $	$= \frac{1}{7} \begin{pmatrix} 14\\ -21 \end{pmatrix}$
$R_2 - 2R_1$	$ \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 \\ -3 \end{pmatrix} $
$ \begin{bmatrix} 1 & -2 \\ 0 & 7 \end{bmatrix} A^{-1} = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix} $	
	BY EQUALITY OF MATRICES
$R_2/7$	x = 2 & y = -3
$\begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} A^{-1} = \begin{bmatrix} 1 & -1 \\ -\frac{2}{7} & \frac{3}{7} \end{bmatrix}$	
$ \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} A^{-1} = \frac{1}{7} \begin{pmatrix} 7 & -7 \\ -2 & 3 \end{pmatrix} $	
$R_1 + 2 R_2$	
$ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} A^{-1} = \frac{1}{7} \begin{pmatrix} 3 & -1 \\ -2 & 3 \end{pmatrix} $	

ſ

02. Using the truth table , examine whether the statement pattern

$$(p \rightarrow q) \leftrightarrow (\sim p \lor q)$$

is a tautology , a contradiction or a contingency

SOLUTION

р	q	~ p	$p \rightarrow q$	~p v q	$(p \rightarrow q) \leftrightarrow (\sim p \lor q)$
Т	Т	F	Т	Т	Т
Т	F	F	F	F	Т
F	Т	Т	Т	Т	Т
F	F	Т	Т	T	Т

Since all the truth values in the last column are 'T' , the statement is a TAUTOLOGY

03. Demand function x , for a certain commodity is given as x = 200 - 4p where p is the unit price . Find elasticity of demand when p = 10 , interpret your result SOLUTION

STEP 1: x = 200 - 4p

$$\frac{dx}{dp} = -4$$

STEP 2: $\eta = \frac{-P}{D} \cdot \frac{dD}{dp}$

$$= \frac{-p}{x} \cdot \frac{dx}{dp}$$

$$= -p \cdot -4$$

200 - 4p

STEP 3:
$$\eta = \frac{10}{p = 10}$$

= $\frac{10}{50 - 10}$
= $\frac{10}{40}$
= $0.25 <$

Demand is relatively inelastic

1

02.	Evaluate : $\int x.tan^{-1}x dx$	
	SOLUTION	
= j	tan ⁻¹ x. x dx	
=	$\tan^{-1}x \int x dx - \int \left(\frac{d}{dx} \tan^{-1}x \int x dx \right) dx$	
=	$\tan^{-1}x \frac{x^2}{2} - \int \frac{1}{1+x^2} \frac{x^2}{2} dx$	
=	$\frac{x^2}{2} \cdot \tan^{-1}x - \frac{1}{2} \int \frac{x^2}{1 + x^2} dx$	
=	$\frac{x^2}{2} \cdot \tan^{-1}x - \frac{1}{2} \int \frac{1+x^2-1}{1+x^2} \cdot dx$	
=	$\frac{x^2 \cdot \tan^{-1}x - \frac{1}{2}}{2} \int \frac{1 - \frac{1}{1 + x^2}}{1 + x^2} dx$	
=	$\frac{x^2}{2} \cdot \tan^{-1}x - \frac{1}{2} \left(x - \tan^{-1}x\right) + c$	
=	$\frac{x^2}{2} \cdot \frac{\tan^{-1}x}{2} - \frac{x}{2} + \frac{\tan^{-1}x}{2} + c$	
03.	Cost of assembling x wallclocks is $\left(\frac{x^3}{3} - 40x^2\right)$	and labor charges are 500x .
	Find the number of wallclocks to be manuf	actured for which marginal cost is
	minimum	
	SOLUTION STEP 1 : MARGINAL COST CM	P 3 :
		$\frac{dC_{M}}{dC_{M}} = 0$
	$\frac{1}{3}$	ax
	$C_{M} = \frac{dC}{dx}$	2x - 80 = 0
	- x ² 80x + 500 STE	x = 40 P 4 :
	STEP 2 :	
	$\frac{dC_{M}}{dx} = 2x - 80$	$\frac{d^2 C_M}{dx^2} = 2 > 0$
	$\frac{d^2 C_M}{dx^2} = 2$	Marginal cost is minimum at x = 20

SIEP 2

$$\lim_{x \to 0} \int_{0}^{1} \frac{\log (1 + 7x)}{bx}$$

$$= \lim_{x \to 0} \frac{\log (1 + 7x)}{bx}$$

$$= \lim_{x \to 0} \frac{\log (1 + 7x)}{bx}$$

$$= \lim_{x \to 0} \frac{1}{b} \frac{\log (1 + 7x)}{x}$$

$$= \lim_{x \to 0} \frac{1}{b} \frac{\log (1 + 7x)}{bx}$$

$$= \lim_{x \to 0} \frac{1}{b} \frac{\log (1 + 7x)}{bx}$$

$$= \frac{7}{b}$$
SIEP 4
Since f is continuous at x = 0

$$\lim_{x \to 0^{+}} \int_{0}^{1} \frac{\log (1 + 7x)}{bx}$$

$$= \frac{7}{b}$$
03. If $x^{23} \cdot y^{53} = (x + y)^{73}$ then show that $\frac{dy = y}{dx - x}$
SOUTION
 $x^{3/3}y^{2/3} = (x + y)^{7/3}$ then show that $\frac{dy = y}{dx - x}$
SOUTION
 $x^{3/3}y^{2/3} = (x + y)^{7/3}$ then show that $\frac{dy = y}{dx - x}$
SOUTION
 $x^{3/3}y^{2/3} = (x + y)^{7/3}$ then show that $\frac{dy = y}{dx - x}$
SOUTION
 $x^{3/3}y^{2/3} = (x + y)^{7/3}$ then show that $\frac{dy = y}{dx - x}$
SOUTION
 $x^{3/3}y^{2/3} = (x + y)^{7/3}$ then show that $\frac{dy = y}{dx - x}$
SOUTION
 $x^{3/3}y^{2/3} = (x + y)^{7/3}$ then show that $\frac{dy = y}{dx - x}$
Solution
 $\frac{5}{3} x + \frac{2}{3} \log y = \frac{7}{3} \log (x + y)$
diff, wit x
 $\frac{5}{x} + \frac{2}{y} \frac{dy}{dx} = \frac{7}{x + y} \frac{d}{(x + y)}$
 $\frac{5}{x} + \frac{2}{y} \frac{dy}{dx} = \frac{7}{x + y} (\frac{1 + dy}{dx})$
 $\frac{5}{x} + \frac{2}{y} \frac{dy}{dx} = \frac{7}{x + y} - \frac{5}{x}$
 $\frac{2x + 2y - 7y}{y(x + y)} \frac{dy}{dx} = \frac{2x - 5y}{x(x + y)}$
 $\frac{2x - 5y}{y(x + y)} \frac{dy}{dx} = \frac{2x - 5y}{x(x + y)}$
 $\frac{dy}{dx} = \frac{y}{x} \dots \text{ PROVED}$

(8) Attempt any IWO of the following
01.
$$\frac{\pi}{3}$$
, $\frac{1}{1+\frac{3}{2} \cot x}$ dx
1 = $\int_{\pi/6}^{\pi/3} \frac{1}{1+\frac{3}{2} \cot x} dx$
1 = $\int_{\pi/6}^{\pi/3} \frac{\frac{3}{2} \sin x + \frac{3}{2} \cot x}{\frac{3}{2} \sin x + \frac{3}{2} \cos x} \dots (1)$
using $\int_{\pi/6}^{h} f(x) dx = \int_{h}^{h} f(a+b-x) dx$
1 = $\int_{\pi/6}^{\pi/3} \frac{\sqrt[3]{\sin(\pi/2-x)} + \sqrt[3]{\cos(\pi/2-x)}}{\sqrt[3]{\sin(\pi/2-x)} + \sqrt[3]{\cos(\pi/2-x)}} dx$
1 = $\int_{\pi/6}^{\pi/3} \sqrt[3]{\frac{3}{2} \cos x} dx \dots (2)$
(1) + (2)
21 = $\int_{\pi/6}^{\pi/3} \frac{\sqrt[3]{\sin x} + \sqrt[3]{\cos x}}{\sqrt[3]{\sin x} + \sqrt[3]{\cos x}} dx$
21 = $\frac{\pi}{3} - \frac{\pi}{6}$
21 = $\int_{\pi/6}^{\pi/3} 1 dx$
21 = $\frac{\pi}{3} - \frac{\pi}{6}$
21 = $(x)_{\pi/6}^{\pi/3}$
1 = $\frac{\pi}{12}$

(08)

Q3B

 $-\frac{\pi}{6}$

$$\begin{array}{rcl} \mathbf{02.} & \int_{0}^{\pi/2} & x^{2} \sin x & dx \\ = & \left\{ x^{2} \int \sin x \, dx - \int \left(\frac{d}{dx} x^{2} \int \sin x \, dx \right) \, dx \right\} & \int_{0}^{\pi/2} \\ = & \left\{ x^{2} - \cos x - \int 2x - \cos x & dx \right\} & \int_{0}^{\pi/2} \\ = & \left\{ -x^{2} \cdot \cos x + 2 \int x \cdot \cos x \, dx \right\} & \int_{0}^{\pi/2} \\ = & \left\{ -x^{2} \cdot \cos x + 2 \int x \cdot \sin x \, dx - \int \left(\frac{d}{dx} - x \int \cos x \, dx \right) \, dx \right\} \right\}_{0}^{\pi/2} \\ = & \left\{ -x^{2} \cdot \cos x + 2 \left(x \cdot \sin x - \int 1 \cdot \sin x \, dx \right) \right\}_{0}^{\pi/2} \\ = & \left\{ -x^{2} \cdot \cos x + 2 \left(x \cdot \sin x - \int \sin x \, dx \right) \right\}_{0}^{\pi/2} \\ = & \left\{ -x^{2} \cdot \cos x + 2 \left(x \cdot \sin x + \cos x \right) \right\}_{0}^{\pi/2} \\ = & \left\{ -x^{2} \cdot \cos x + 2 \left(x \cdot \sin x + \cos x \right) \right\}_{0}^{\pi/2} \\ = & \left\{ -x^{2} \cdot \cos x + 2 \left(x \cdot \sin x + \cos x \right) \right\}_{0}^{\pi/2} \\ = & \left\{ -x^{2} \cdot \cos x + 2 x \sin x + 2 \cos x \right\}_{0}^{\pi/2} \\ = & \left\{ -x^{2} \cdot \cos x + 2 x \sin x + 2 \cos x \right\}_{0}^{\pi/2} \\ = & \left\{ -x^{2} \cdot \cos x + 2 x \sin x + 2 \cos x \right\}_{0}^{\pi/2} \\ = & \left\{ -x^{2} \cdot \cos x + 2 x \sin x + 2 \cos x \right\}_{0}^{\pi/2} \\ = & \left\{ -x^{2} \cdot \cos x + 2 x \sin x + 2 \cos x \right\}_{0}^{\pi/2} \\ = & \left\{ -x^{2} \cdot \cos x + 2 x \sin x + 2 \cos x \right\}_{0}^{\pi/2} \\ = & \left\{ -x^{2} \cdot \cos x + 2 x \sin x + 2 \cos x \right\}_{0}^{\pi/2} \\ = & \left\{ -x^{2} - x^{2} - x \sin x + 2 \cos x \right\}_{0}^{\pi/2} \\ = & \left\{ -x^{2} - x^{2} - x \sin x + 2 \cos x \right\}_{0}^{\pi/2} \\ = & \left\{ -x^{2} - x \cos x + 2 x \sin x + 2 \cos x \right\}_{0}^{\pi/2} \\ = & \left\{ -x^{2} - x \cos x + 2 x \sin x + 2 \cos x \right\}_{0}^{\pi/2} \\ = & \left\{ -x^{2} - x \cos x + 2 x \sin x + 2 \cos x \right\}_{0}^{\pi/2} \\ = & \left\{ -x^{2} - x \cos x + 2 x \sin x + 2 \cos x \right\}_{0}^{\pi/2} \\ = & \left\{ -x^{2} - x \cos x + 2 x \sin x + 2 \cos x \right\}_{0}^{\pi/2} \\ = & \left\{ -x^{2} - x \cos x + 2 x \sin x + 2 \cos x \right\}_{0}^{\pi/2} \\ = & \left\{ -x^{2} - x \cos x + 2 x \sin x + 2 \cos x \right\}_{0}^{\pi/2} \\ = & \left\{ -x^{2} - x \cos x + 2 x \sin x + 2 \cos x \right\}_{0}^{\pi/2} \\ = & \left\{ -x^{2} - x \cos x + 2 x \sin x + 2 \cos x \right\}_{0}^{\pi/2} \\ = & \left\{ -x^{2} - x \cos x + 2 x \sin x + 2 \cos x \right\}_{0}^{\pi/2} \\ = & \left\{ -x^{2} - x \cos x + 2 x \sin x + 2 \cos x \right\}_{0}^{\pi/2} \\ = & \left\{ -x^{2} - x \cos x + 2 x \sin x + 2 \cos x \right\}_{0}^{\pi/2} \\ = & \left\{ -x^{2} - x \cos x + 2 x \sin x + 2 \cos x \right\}_{0}^{\pi/2} \\ = & \left\{ -x^{2} - x \cos x + 2 x \sin x + 2 \cos x \right\}_{0}^{\pi/2} \\ = & \left\{ -x^{2} - x \cos x + 2 x \sin x + 2 \cos x \right\}_{0}^{\pi/2} \\ = & \left\{ -x^{2} - x \cos x + 2 x \sin x + 2 \cos x \right\}_{0}^{\pi/2} \\ = & \left\{ -x^{2} - x \cos x + 2 x \sin x +$$

	03. Express the following equations in matrix	x form and solve them by method of inversion
	2x - y + z = 1; $x + 2y + 3$	z = 8; $3x + y - 4z = 1$
	2x - y + z = 1	
	x + 2y + 3z = 8	
	3x + y - 4z = 1	
STEP	1:	
	$ \begin{pmatrix} 2 & -1 & 1 \\ 1 & 2 & 3 \\ 3 & 1 & -4 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 8 \\ 1 \end{pmatrix} $	
	AX = B	
	$A^{-1}AX = A^{-1}B$	
	$IX = A^{-1}B$	
	$X = A^{-1}B$	
STEP	2 : $A = \begin{pmatrix} 2 & -1 & 1 \\ 1 & 2 & 3 \\ 3 & 1 & -4 \end{pmatrix}$	
COFA	CTOR'S	
A ₁₁	$= (-1)^{1+1} \begin{vmatrix} 2 & 3 \\ 1 & -4 \end{vmatrix} = 1(-8 - 3) = -11$	$A_{23} = (-1)^{2+3} \begin{vmatrix} 2 & -1 \\ 3 & 1 \end{vmatrix} = -1(2+3) = -5$
A ₁₂	$= (-1)^{1+2} \begin{vmatrix} 1 & 3 \\ 3 & -4 \end{vmatrix} = -1(-4 - 9) = 13$	$A_{31} = (-1)^{3+1} \begin{vmatrix} -1 & 1 \\ 2 & 3 \end{vmatrix} = 1(-3-2) = -5$
A ₁₃	$= (-1)^{1+3} \begin{vmatrix} 1 & 2 \\ 3 & 1 \end{vmatrix} = 1(1-6) = -5$	$A_{32} = (-1)^{3+2} \begin{vmatrix} 2 & 1 \\ 1 & 3 \end{vmatrix} = -1(6-1) = -5$
A ₂₁	$= (-1)^{2+1} \begin{vmatrix} -1 & 1 \\ 1 & -4 \end{vmatrix} = -1(4-1) = -3$	$A_{33} = (-1)^{3+3} \begin{vmatrix} 2 & -1 \\ 1 & 2 \end{vmatrix} = 1(4+1) = 5$
A ₂₂	$= (-1)^{2+2} \begin{vmatrix} 2 & 1 \\ 3 & -4 \end{vmatrix} = 1(-8 - 3) = -11$	

COFACTOR MATRIX OF A $ \begin{pmatrix} -11 & 13 & -5 \end{pmatrix}$	$ \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} $
$\begin{bmatrix} -3 & -11 & -5 \\ -5 & -5 & 5 \end{bmatrix}$	BY EQUALITY OF TWO MATRICES
ADJ A = TRANSPOSE OF THE COFACTOR MATRIX	x = 1 , y = 2 & z = 1 SS : {1, 2 , 1}
$= \begin{pmatrix} -11 & -3 & -5 \\ 13 & -11 & -5 \\ -5 & -5 & 5 \end{pmatrix}$	
$ \mathbf{A} = 2(-8 - 3) + 1(-4 - 9) + 1(1 - 6)$	
= 2(-11) + 1(-13) + 1(-5)	
= - 22 - 13 - 5 = - 40	
$\mathbf{A^{-1}} = \underline{1} \text{adj A}$	
$= -\frac{1}{40} \begin{pmatrix} -11 & -3 & -5\\ 13 & -11 & -5\\ -5 & -5 & 5 \end{pmatrix}$	
$= \frac{1}{40} \begin{pmatrix} 11 & 3 & 5 \\ -13 & 11 & 5 \\ 5 & 5 & -5 \end{pmatrix}$	
STEP 3 :	
$X = A^{-1}B$	
$ \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \frac{1}{40} \begin{pmatrix} 11 & 3 & 5 \\ -13 & 11 & 5 \\ 5 & 5 & -5 \end{pmatrix} \begin{pmatrix} 1 \\ 8 \\ 1 \end{pmatrix} $	
$ \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \frac{1}{40} \begin{pmatrix} 11 + 24 + 5 \\ -13 + 88 + 5 \\ 5 + 40 - 4 \end{pmatrix} $	
$ \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \frac{1}{40} \begin{pmatrix} 40 \\ 80 \\ 10 \end{pmatrix} $	

SECTION - II Q4. (A)Attempt any six of the following (12) **01.** the pdf of continuous random variable X is given by f(x) = x; 0 < x < 48 = 0 ; otherwise . Find P(2 < X < 3)SOLUTION : the pdf of continuous random variable X is given by f(x) = x; 0 < x < 48 = 0 ; otherwise . P(2 < X < 3)3 $=\int \frac{x}{8} dx$ 2 3 $\left(\frac{x^2}{16}\right)$ = $= \left(\frac{9}{16}\right) - \left(\frac{4}{16}\right)$ $= \frac{5}{16}$ 02. What is the sum due of ₹ 5,000 due 4 months hence at 12.5% p.a. simple interest SOLUTION : SD = PW + Interest on PW $SD = 5000 + 5000 \times 12.5 \times 4$ 100 12 = 5000 + 208.33 = ₹ 5208.33 **03.** for a bivariate data $b_{yx} = -1.2$ and $b_{xy} = -0.3$. Find correlation coefficient between x and y SOLUTION :

$$r^{2} = byx x bxy$$

= $-\frac{12}{10} x - \frac{3}{10}$ $r = -\frac{6}{10}$ (byx & bxy are -ve)
= $\frac{36}{100}$

04. Anandi and Rutuja invested ₹ 10,000 each in a business . Anandi withdrew her capital after 7 months . Rutuja continued for the year . After one year the profit earned by them was ₹ 5,700 . Find the profit by each person

SOLUTION :

Profits will be shared in the ratio of 'PERIOD OF INVESTMENT'

PSR : Anandi Rutuja
7 : 12
Anandi's share in profit =
$$\frac{7}{19}$$
 x 5700 = ₹ 2100
Rutuja's share in profit = $\frac{12}{19}$ x 5700 = ₹ 3600

05. Compute the age specific death rate for the following SOLUTION :

Age Group	No. of persons	No. of deaths	SDR = D (DEATHS PER 000)
	In '000		Р
Below 5	15	360	360 = 24
			15
5 – 30	20	400	<u>400</u> = 20
			20
Above 30	10	280	<u>280</u> = 28
			10

06.
$$X = x$$
 -1 0 1 $P(x)$ -0.2 1 0.2

Verify whether the above function can be regarded as p.m.f. **SOLUTION** :

P(-1) = -0.2 Since $p(x) \ge 0 \forall x$, the function is not a pmf

07. SOLUTION :

a) MARGINAL FREQUENCY DISTRIBUTION OF AGE OF HUSBANDS

CI	20 - 30	30 - 40	40 - 50	50 - 60	TOTAL
F	5	20	44	24	93

b) CONDITIONALMARGINAL FREQUENCY DISTRIBUTION OF AGE OF HUSBANDS WHEN AGE WIVES LIES IN 25 - 35

CI	20 - 30	30 - 40	40 - 50	50 - 60	TOTAL
F	0	10	25	2	37

08. from the regression equations : y = 4x - 5 and 3x = 2y + 5. find \overline{x} and \overline{y} ans : $\overline{x} = 1$ & $\overline{y} = -1$

Q5.	(A)	Attempt any Two of the following (06)
	01.	From a lot of 25 bulbs of which 5 are defective a sample of 5 bulbs was drawn at
		random with replacement . Find the probability that the sample will contain
		a) exactly 1 defective bulb b) at least 1 defective bulb
		a lot of 25 bulbs : 5 defective , 20 non defective
		5 bubs are arawn ar random winn replacement, n - 5 For a trial Success - a defective bulb
		p – probability of success = 5/25 = 1/5
		q - probability of failure = $1 - 1/5$ = $4/5$
		r.v. X – no of successes = 0, 1, 2, 3, 4, 5
		X ~ B (5, 1/5)
		a) P(exactly 1 defective bulb)
		- r(x - 1)
		= ${}^{5}C_{1} \cdot p^{1} \cdot q^{4}$
		$= {}^{5}C_{1} \left(\frac{1}{5}\right)^{1} \left(\frac{4}{5}\right)^{4}$
		$= 5.4^4$
		55
		$= \frac{256}{625}$
		b) P(at least 1 defective bulb)
		$= P(X \ge 1)$
		= P(1) + P(2) + + P(5)
		= 1 – P(0)
		= $1 - {}^{5}C_{0} \cdot p^{0} \cdot q^{5}$
		$= 1 - {}^{5}C_{0}\left(\frac{1}{5}\right)^{0}\left(\frac{4}{5}\right)^{5}$
		$= 1 - \frac{45}{5^5}$
		$=$ 1 - $\frac{1024}{3125}$
		= 2101 3125

02. The defects on a plywood sheet occur at random with an average of one defect per 50 sq. feet . What is the probability that such sheet will have a) no defects b) at least one defect $(\text{Given}: e^{-1} = 0.3678)$ SOLUTION m = average number of defects in a ply wood sheet = 1 $r.v X \sim P(1)$ P(sheet will have no defects) = P(0) $= \frac{e^{-1}10}{0!}$ Using P(x) $= \frac{e^{-m}.m^{x}}{x!}$ $= e^{-1}$. (1) = 0.3678 P(sheet will have at least 1 defect) $= P(x \ge 1)$ $= P(1) + P(2) + \dots$ = 1 - P(0)= 1 - 0.3678 = 0.6322

03. Find the true discount , banker's discount and banker's gain on a bill of ₹ 36,600 due 4 months hence at 5% p.a.

SOLUTION STEP 1 : FΥ = PW + Int on PW for 4 months @ 5% p.a. 36600 $= PW + PW \times 4 \times 5$ 12 100 36600 = PW + PW 60 36600 = 61 PW 60 ΡW $= 36600 \times 60$ 61 = ₹ 36,000

```
STEP 2 :
TD = Int on PW for 4 months @ 5% p.a.
= 36000 x <u>4</u> x <u>5</u>
12 100
= ₹ 600
```

BD = Int on FV for 4 months @ 5% p.a.

$$= 36600 \times 4 \times 5 \\ 12 \times 100$$

(B) Attempt any Two of the following

01. a car valued at ₹ 4,00,000 is insured for ₹ 2,50,000. The rate of premium is 5% less 20%.
 How much loss does the owner bear including premium , if the value of the car is reduced to 60% of its original value

SOLUTION	
Value of car	= ₹ 4,00,000
Insured value	= ₹ 2,50,000
Rate of premium	= 5 % less 20%.
Premium	$= \frac{5}{100} \times 2,50,000$
	= ₹12,500
less 20% disc	- 2,500
Net Premium	= ₹10,000

Q5B

(08)

Since the value of the car is reduced to 60% of its original value , the loss on the car is 40%

Loss	=	<u>40</u> x 4,00,000 100
	=	₹ 1,60,000
Claim	=	insured val. x loss Property val.
	=	<u>2,50,000</u> x 1,60,000 4,00,000
	=	₹ 1,00,000
Loss	=	1,60,000
Less claim		- 1,00,000
Net loss	=	60,000
Add premium		+ 10,000
Net loss Incl. premium	=	₹ 70,000

AGE X	lx	$d\mathbf{x} = l\mathbf{x} - l\mathbf{x} + 1$	$qx = \frac{dx}{/x}$	px = 1 – qx	$Lx = \frac{/x + /x + 1}{2}$	Тх	$e_x^0 = \frac{Tx}{/x}$
0	1000	1000 - 850= 150	$\frac{150}{1000} = 0.15$	1 - 0.15 = 0.85	850 + 75 = 925	2495	$\frac{2495}{1000}$ = 2.495
1	850	850 - 760 = 90	$\frac{90}{850} = 0.1059$	1 - 0.1059 = 0.8941	760 + 45 = 805	1570	$\frac{1570}{850} = 1.847$
2	760	760 - 360 = 400	$\frac{400}{760} = 0.5264$	1 - 0.5264 = 0.4736	360 + 200= 560	765	<u>765</u> = 1.007 760
3	360	360 - 25 = 335	$\frac{335}{360} = 0.9305$	1 - 0.9305 = 0.0695	25+ 167.5= 192.5	205	$\frac{205}{360}$ = 0.5696
4	25	25 - 0 = 25	$\frac{25}{25} = 1$	1 - 1 = 0	0 + 12.5 = 12.5	12.5	$\frac{12.5}{25} = 0.5$
5	0						

LOG CALCULATIONS FOR 'qx'

LOG CALCULATIONS FOR e_x^{0} ,

LOG 90 – LOG 850	LOG 400 - LOG 760	LOG 335 - LOG 360	LOG 1570 – LOG 850	LOG 765 – LOG 760	LOG 205 – LOG 360
1.9542	2.6021	2.5250	3.1959	2.8837	2.3118
- 2.9294	- 2.8808	- 2.5563	- 2.9294	- 2.8808	- 2.5563
AL 1.0248	AL 1.7213	AL 1.9687	AL 0.2665	AL 0.0029	AL 1.7555
0.1059	0.5264	0.9305	1.847	1.007	0.5696

03. a person makes two types of gift items A and B requiring the services of cutter and a finisher. Gift item A requires 4 hours of cutter's time and 2 hours of finisher's time. Gift item B requires 2 hours of cutter's time and 4 hours of finisher's time. The cutter and finisher have 208 hours and 152 hours available time respectively every month. The profit on one gift item of type A is ₹ 75 and on the gift item B is ₹ 125. Assuming that a person can sell all the gift items produced, determine how many gift items of each type should he make every month to obtain the best returns

TABULATION :

No of units mfg	ITEM A	ITEM B y	Maximum Available Time	
	Time reqd	(in hrs)		
CUTTIING	4	2	208	
FINISHING	2	4	152	
Profit / unit	75/-	125/-		
No of units mfg CUTTIING FINISHING Profit / unit	X 4 2 75/	y //unit (in hrs) 2 4 125/-	Available (in hrs) 208 152	

CONSTRAINT

- 1. Since cutter has 208 hours $4x + 2y \le 208$
- 2. Since finisher has 152 hours , $2x + 4y \le 152$
- 3. Since x and y are no of units manufactured , cannot be -ve $x \;,\; y \geq 0$

OBJECTIVE FUNCTION

Total profit = 75x + 125y (in rupees) \therefore Maximize z = 75x + 125y

LPP MODEL

maximum Profit of ₹ 5300

Q6. (A) Attempt any Two of the following

01. John and Mathew started a business with their capitals in the ratio 8 : 5 . After 8 months , John added 25% of his earlier capital as further investment . At the same time , Mathew withdrew 20% of his earlier capital . At the end of the year , they earned Rs 52,000 as profit . How should they divide the profit between them

SOLUTION

PARTNER'S NAME	CAPITAL INVESTED	PE INV	PERIOD OF	
P + 25%	₹ 8k ₹ 2k	8	MONTHS	
	₹10k	4	MONTHS	
Q 20%	₹5k ₹k	8	MONTHS	
2070	₹ 4k	4	MONTHS	

STEP 1:

Profits will be shared in the

'RATIO OF PRODUCT OF CAPITAL INVESTED & PERIOD OF INVESTMENT'

_	Р	Q			
=	8k x 8 + 10k x 4	:	5k x 8 +	4k x 4	
=	64k + 40k	:	40k + 1a	šk	
=	104k	:	56k		
=	13	:	7	TOTAL = 20	
STEP	2 :				
Total profit			₹ 52,000)	
P's share of profit		=	<u>13</u> x 52000 20		
		=	₹ 33,80	0	

Q's share of profit	$= \frac{7}{20} \times 52,000$
	= ₹19,200

(06)

06A

02. Find mean and variance of the continuous random variable X whose p.d.f is given as

$$f(x) = 6x(1 - x)$$
 $0 < x < 1$
= 0 otherwise

$$i| E(X) = \int_{0}^{1} x.f(X) dX = \frac{1}{4}$$

$$= \int_{0}^{1} x.6x(1-x) dx = 6 \left(\frac{x^{4}}{4} - \frac{x^{5}}{5} \right)_{0}^{1} - \frac{1}{4}$$

$$= 6 \int_{0}^{1} x^{2}(1-x) dx = 6 \left(\frac{1}{4} - \frac{1}{5} \right) - \frac{1}{4}$$

$$= 6 \left(\frac{1}{4} - \frac{1}{5} \right) - \frac{1}{4}$$

$$= 6 \left(\frac{x^{3}}{3} - \frac{x^{4}}{4} \right)_{0}^{1} = \frac{3}{10} - \frac{1}{4}$$

$$= 6 \left(\frac{1}{3} - \frac{1}{4} \right) = \frac{12 - 10}{40}$$

$$= \frac{12}{20}$$

$$= \frac{1}{2}$$

$$= 0.5$$

$$i| Var(X) = \int_{0}^{1} x^{2}.f(X) dX - (E(X))^{2}$$

$$= \int_{0}^{1} x^{2}.6x(1-x) dX - \frac{1}{4}$$

$$= 6 \int_{0}^{1} x^{3}(1-x) dx - \frac{1}{4}$$

03. For bi - variate data x = 53 and y = 28, byx = -1.5, bxy = -0.2
Find a) correlation coefficient between x and y
b) Estimate Y for X = 50
c) Estimate X for Y = 25
SOLUTION

a) YON X

$$y - \overline{y} = byx(x - \overline{x})$$

$$y - 28 = -1.5(x - 53)$$

$$y - 28 = -1.5(50 - 53)$$

$$y - 28 = -1.5(-3)$$

$$y - 28 = 4.5$$

$$y = 32.5$$
 for $x = 50$

a) X ON Y

$$x - \overline{x} = bxy(y - \overline{y})$$

 $x - 53 = -0.2(x - 28)$
 $x - 53 = -0.2(25 - 28)$
 $x - 53 = -0.2(-3)$
 $x - 53 = 0.6$

x = 53.6 for y = 25

(B) Attempt any Two of the following

01.				I		ANTIBIO	TICS			
		_		А	В	С		D	Е	
			Cı	27	18			20	21	
	CAPSUAL	TION	C ₂	31	24	21		12	17	
	MACHIN	ES	C ₃	20	17	20			16	
			C4	21	28	20		16	27	
	27	18	N		20	21	_	add	a DUMMY	machine C5 to balance
	31	24	2	1	12	17		the r	matrix	
	20	17	2	C	Μ	16	-	M is	a very lar	ge number such that
	21	28	2	C	16	27			M – any	number = M
	0	0	C)	0	0				
	9	0	N		2	3	_	Redu	ucing the	matrix using
	19	12	9)	0	5				'ROW MINIMUM'
	4	1	Z	Ļ	Μ	0				
	5	12	Z	ļ	0	11				
	0	0	C)	0	0				
	9	0	N		2	3	_	Alloc	cation usir	ng
	19	12	9)	0	5		'S	INGLE ZER	RO ROW- COLUMN METHOD'
	4	1	4	Ļ	м	0				
	5	12	Z	Ļ	×	11	_	since	e allocatio	on is incomplete we need
	0	×	کر	¢	×	×		to re	evise the n	natrix
	9		•••••			3	_	Draw	vina minin	num lines to cover all the
	19	12	9)	ā	5 1		exist	ina zeros	
	4	· –			 M			e / lie li	g 20.00	
	5	12	Z	Ļ	X	11 1				
		×		<u>(</u>	X	X				
				·						
	9	0	N		6	3	_	Revis	se the ma	trix
	15	8	5	ò	0	1		Re	educe all	the uncovered elements
	4	1	2	ļ	М	0		by	y its minim	num & add the same at the
	1	8	C)	0	7		in	tersectior	1
	0	0	C)	4	0				

(08)

9 1 M 6 3 - Reallocation
15 8 5 0 1 - Since each row new contains one
4 1 4 M 0 assigned zero, the assignment problem
1 8 0 X 7 is solved
0 X X 4 X
Optimal Assignment
C1 - B, C2 - D, C3 - E, C4 - C, C5 - A (DUMMY), min cost = 66
02. Regression of two series are
2x - y - 15 = 0 & 3x - 4y + 25 = 0 Find mean of x and y and also the coefficient of
correlation
STEP 1
ASSUME
XON Y: 2x - y - 15 = 0
$$\log r = \frac{1}{2} \left[\log 3 - \log 8 \right]$$

2x = y + 15 $\log r = \frac{1}{2} \left[\log 4771 - 0.9031 \right]$
bxy = $\frac{1}{2}$ $\log r = 0.2386 - 0.4516$
4y = 3x + 25 $\log r = 1.7870$
y = $\frac{3}{4}$ r = 0.6124
STEP 2
r² = bxy, byx $r = 0.6124$
SIEP 2
r² = bxy, byx $r = 12$ $\frac{3x - 4y = 25}{2}$ $\frac{3x - 4y = 25}{2}$

03. x : 9 7 6 8 16 18 15. Find Karl Pearson's Correlation coeff. : 19 y $(x - \overline{x})(y - \overline{y})$ (y – y)² $(x - x)^{2}$ y-y x-x У Х -1 -1 -2 -2 $\Sigma(y-\overline{y})^2 \frac{1}{\Sigma(x-\overline{x})(y-\overline{y})}$ $\Sigma(y-\overline{y}) \stackrel{|}{\Sigma} (x-\overline{x})^2$ $\Sigma(x-\overline{x})$ Σx Σy x = 7 $\overline{y} = 17$

$$r = \Sigma (x - \overline{x}) \cdot (y - \overline{y})$$

$$\sqrt{\Sigma(x-\overline{x})^2} \sqrt{\Sigma(y-\overline{y})^2}.$$

$$r = \frac{10}{\sqrt{10} \times \sqrt{10}}$$

r = 1